- test offerta formativa
- Master's Degree in MATHEMATICS
- FOUNDATIONS OF HIGHER ANALYSIS I
FOUNDATIONS OF HIGHER ANALYSIS I
- Teaching in italian
- ISTITUZIONI DI ANALISI SUPERIORE I
- Teaching
- FOUNDATIONS OF HIGHER ANALYSIS I
- Subject area
- MAT/05
- Reference degree course
- MATHEMATICS
- Course type
- Master's Degree
- Credits
- 6.0
- Teaching hours
- Frontal Hours: 42.0
- Academic year
- 2022/2023
- Year taught
- 2022/2023
- Course year
- 1
- Language
- ITALIAN
- Curriculum
- PERCORSO COMUNE
- Reference professor for teaching
- LEACI Antonio
- Location
- Lecce
Teaching description
Algebra Lineare, Topologia generale, Analisi Matematica di base.
Spazi di Banach, di Hilbert e teoria spettrale.
Il Corso si propone di dare una introduzione al linguaggio, ai metodi e risultati fondamentali dell'Analisi Funzionale Lineare, estendendo tecniche e risultati noti dell'Algebra Lineare a spazi a dimensione infinita. Lo Studente dovrà essere in grado di discutere proprietà e alcune applicazioni della Geometria degli Spazi di Banach.
Lezioni frontali con esercitazioni in aula su specifici argomenti.
L'esame consiste di una prova scritta su 4 domande (in cui è richiesta l'esposizione di risultati teorici presentati nel corso e una applicazione) da svolgere in 2 ore, e un colloquio successivo, se sono necessari alcuni approfondimenti.
1. Spazi vettoriali reali (complessi), Spazi normati, Spazi metrici. Insiemi aperti, chiusi, successioni convergenti, separabilità, applicazioni continue tra spazi normati. Successioni di Cauchy e proprietà. Spazi normati completi (spazi di Banach). Serie convergenti negli spazi normati e relativo teorema di completezza. Spazio quoziente normato e teorema di completezza. Operatori lineari, operatori limitati. Continuità degli operatori lineari limitati. Lo spazio di Banach degli operatori lineari limitati B(X; Y ) ( X spazio normato, Y spazio di Banach). Operatore integrale e operatore di derivazione. Omeomorfismo tra uno spazio normato a dimensione finita N sul campo K (K = R, K = C) e K^N . Norme equivalenti. In uno spazio a dimensione finita tutte le norme sono equivalenti. Insiemi compatti, relativamente compatti, precompatti: caratterizzazioni in spazi metrici (en.). La palla unitaria chiusa di uno spazio normato X è compatta se e solo se X ha dimensione finita. Esercitazione: Alcuni spazi classici : C^0 ([a; b];R); (spazi di successioni) l^1, l^p (1 < p < infinito, p=infinito), c, c^0 e loro completezza. 2 .Spazi di Hilbert: definizione e proprietà elementari (prodotto scalare, disuguaglianza di Cauchy-Schwarz, identità del parallelogramma). Proiezione su un convesso chiuso. Lo spazio duale di uno spazio di Hilbert (teorema di rappresentazione di Riesz). Convergenza debole in uno spazio di Hilbert. Compattezza debole in uno spazio di Hilbert: estensione del Teorema di Bolzano-Weierstrass. Operatori strettamente definiti positivi e relativo teorema. Esercitazione: Somme di Hilbert. Basi ortonormali: esistenza di basi ortonormali in uno spazio di Hilbert separabile. Completezza di un sistema ortonormale 3. Funzionali lineari, funzionali limitati. Spazio duale ( di Banach) di uno spazio normato X, B(X;K) =: X*. Convergenza debole su X e convergenza debole* su X*: definizione e proprietà. Equivalenza della convergenza debole, della convergenza debole * e della convergenza forte (in norma) in uno spazio a dimensione finita. Compattezza della palla unitaria chiusa di X* rispetto alla convergenza debole* (Teorema di Banach- Alaoglu- Bourbaki).Teorema di compattezza (di Ascoli-Arzela) in C^0 (E;R^n) (E spazio metrico compatto). Esercitazione: Spazi l^p; c ;c^0 : dualità e separabilità. 4. Lemma di Zorn. Teorema di estensione di Hahn-Banach per funzionali lineari reali (forma analitica). Teorema di estensione per funzionali su K, lineari limitati . Corollari. Riflessività. Compattezza debole in uno spazio riflessivo. Insiemi di I e II categoria in uno spazio metrico. Teorema di Baire-Hausdoff.(Ogni spazio metrico completo è di II categoria). Principio di uniforme limitatezza di Banach-Steinhaus. Continuità del limite puntuale. Teorema dell'applicazione aperta. Teorema di limitatezza dell'operatore inverso. Corollario. Teorema del grafici chiuso. Esercitazione: Spazi lp; c ;c^0 : riflessività.. 5. Operatori aggiunti e proprietà. Operatori compatti: proprietà. Lo spazio di Banach K(X; Y), degli operatori compatti. Operatori di rango finito F(X; Y ) s.sp. di K(X; Y ) s.sp.di B(X; Y ). Compattezza di operatori integrali. Teorema di Schauder (aggiunto di un operatore compatto). Operatori compatti su uno spazio di Hilbert. Teorema di Fredholm. Alternativa di Fredholm. Insieme risolvente, spettro di un operatore lineare limitato su uno spazio di Hilbert. Spettro di un operatore lineare compatto su uno spazio di Hilbert. Operatori autoaggiunti (simmetrici). Limitazioni per lo spettro di un operatore autoaggiunto. Teorema spettrale (di Hilbert-Schmidt, per operatori compatti autoaggiunti su spazi di Hilbert reali separabili): autovettori di un operatore compatto autoaggiunto.
H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer 2010. A. Bressan: Lecture Notes on Functional Analysis with applications to linear partial differential equations, vol. 143 AMS 2013 A.N. Kolmogorov, S.V. Fomin: Elementi di teoria delle funzioni e di Analisi Funzionale, MIR 1980.
I primi cinque capitoli con esercizi in: M. Carriero-A.Carbotti-S.Cito, Elementi di Analisi Funzionale Lineare. Seconda edizione rivista e ampliata (2022) .
Semester
First Semester (dal 26/09/2022 al 16/12/2022)
Exam type
Compulsory - Characterizing
Type of assessment
Oral - Final grade
Course timetable
https://easyroom.unisalento.it/Orario