PHYSICS (LM38)

(Lecce - Università degli Studi)

Teaching PHENOMENOLOGY OF ELEMENTARY PARTICLES

GenCod A004124

Owner professor Edoardo GORINI

Teaching in italian FENOMENOLOGIA DELLE PARTICELLE ELEMENTARI Teaching PHENOMENOLOGY OF

ELEMENTARY PARTICLES

SSD code FIS/04

Reference course PHYSICS

Course type Laurea Magistrale

Credits 7.0

Teaching hours Front activity hours:

/₁9 ∩

For enrolled in 2022/2023

Taught in 2022/2023

Course year 1

Language ITALIAN

Curriculum ASTROFISICA,FISICA SPERIMENTALE DELLE INTERAZIONI

Location Lecce

Semester First Semester

Exam type Oral

Assessment Final grade

Course timetable

https://easyroom.unisalento.it/Orario

BRIEF COURSE DESCRIPTION

I corso si propone di fornire la comprensione dei principali aspetti teorici e sperimentali della fisica delle particelle elementari. In particolare affrontando i principali aspetti terorici e le principali verifiche sperimentali del Modello Standard delle particelle elementari.

REQUIREMENTS

Non sono previste propedeuticità rigide. E' consigliato aver frequentato il corso di Istituzioni di Fisica Nucleare e Subnucleare. E' consigliata la conoscano la meccanica quantistica e una conoscenza preliminare della fisica delle particelle elementari.

COURSE AIMS

Il corso intende offrire una introduzione alla teoria standard delle interazioni fondamentali, con applicazioni ad alcuni processi di interesse attuale nella fisica delle alte energie

TEACHING METHODOLOGY

Il corso si sviluppa in lezioni cattedratiche, con eventuale ausilio di immagini. Domande e interventi da parte degli studenti sono ben accetti ed anzi stimolati.

ASSESSMENT TYPE

Colloquio che verterà sulla conoscenza degli argometi trattati nel corso e nell'impostazione di acluni

esercizi.

ASSESSMENT SESSIONS

Gli appelli d'esame sono pubblicati sul calendario ufficiale

FULL SYLLABUS

- Richiami di nozioni fondamentali: trasformazioni di Lorentz, quadrivettori e invarianti relativistici, energia nel centro di massa; unità naturali; collisioni e sezione d'urto.
 - Il modello standard:
 - Cenni sulla quantizzazione del campo e diagrammi di Feynman;
 - Struttura gruppale del modello;
 - Invarianza e principi di conservazione;
 - Interazioni adroniche;
- Interazioni deboli: il decadimento Beta, la teoria V-A, decadimenti delle particelle strane, interazioni di corrente neutra, il meccanismo GIM e la latrice CKM;
- Rottura spontanea di simmetria e il mecanismo di produzione delle masse: i bosoni di Goldstone e il meccanismo di Higgs;
- Verifiche fondamentali: violazione di CP nel sistema dei K neutri, produzione e scoperta dei bosoni W e Z, le oscillazioni di neutrini, la scoperta del quark top al Tevator, la scoperta del bosone di Higgs a LHC.
 - Cenni sulla fisica oltre il modello standard.

REFERENCE TEXT BOOKS

- 1. A. De Angelis, M. J. M. Pimenta "Introduction to Particle and Astroparticle Physics", Springer (Milano, 2015).
 - 2. D.H. Perkins "Introduction to High Energy Physics", Addison-Wesley.
- 3. A. Bettini "Introduction to Elementary Particle Physics", Cambridge University Press (Cambridge, 2014)
- 4. S. Braibant, G. Giacomelli, M. Spurio "Particelle e interazioni fondamentali", Springer (Milano, 2009)

