AEROSPACE ENGINEERING (LM52)

(Brindisi - Università degli Studi)

Teaching ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.	Teaching in italian ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I. Teaching ATMOSPHERIC AND SPACE FLIGHT DYNAMICS (MOD.2) C.I.	Course year 1 Language
GenCod A005138	SSD code ING-IND/03	Curriculum Percorso comune
Owner professor Giulio AVANZINI	Reference course AEROSPACE ENGINEERING	
	Course type Laurea Magistrale	Location Brindisi
	Credits 6.0	Semester
	Teaching hours Front activity hours: 54.0	Exam type Oral
	3	Exam type Oral Assessment
	54.0	

BRIEF COURSEThe course is aimed at introducing the student to the methods for modeling the dynamic behavior
of an aircraft as a function of its aerodynamic configuration, propulsion system and inertial
characteristics. Based on models derived on first principles, the students will learn the tools
necessary for the determination of aircraft characteristics in terms of static and dynamic stability
and response to controls. The course is focused on the dynamics of rigid aircraft. Effects of
structural deformation on stability and control are introduced at an elementary level. A few notion
on rotorcraft dynamics (helicopter trim and rotor blade flapping dynamics) and satellite attitude
dynamics and control are also provided.
Tutorials will allow the students to apply the notions learned to representative examples and case
studies, maturing the capability of interpreting aircraft and spacecraft motion as a function of
controls.

REQUIREMENTS

COURSE AIMS

A the end of the course the student is ecpected to be able to

dynamics are highly recommentded.

1) determine trim conditions, aircraft stability and response to controls for conventional configurations;

Basic knowledge of fluid-dynamics and a good knowledge of flight mechanics and analytical

2) understand basic features of rotary wing aircraft dynamics and its response to controls;

3) understand basic features of rigid spacecraft dynamics and how to control it;

4) handle mathematical and numerical tools for simulating aircraft and spacecaft dynamic behavior.

TEACHING METHODOLOGY	 The course is delivered with class and laboratory activities, in three different forms: standard class lectures, where the teacher presents methods and models; students are encouraged to participate by discussing validity of the assumptions at the basis of the models and physical meanings of the results derived from the analysis performed; <i>example: derive the expression of aircraft neutral point</i>; tutorial classes, during which problems are stated, where the students refine their understanding, by numerically evaluating aircraft performance from geometric, propulsion and aerodynamics characteristics; the teacher supports the class by recalling relevant models and highlighting the procedure; some calculations (e.g. for a different set of parameters) can be proposed to the students as homework; <i>example: evaluate the position of aircraft neutra point from aircraft geometric and aerodynamic data</i>; computer lab. classes, where students are required to write simple computer programs for performing parametric analysis, and/or use or implement Simulink models for simulation; <i>example: evaluate aircraft response in simulation for differnet control inputs</i>. Results from homework and conputer lab classes will be collected in a report to be delivered and discussed during the oral exam.
ASSESSMENT TYPE	The exam is oral. The exam starts with a discussion of the projects proposed during the tutorials and lab. classes in order to evaluate the capability of the student in analyzing complex problems, where numerical tools or a large number of calculations are required, using some mathematical programming software and/or simulation tools. The oral exam also includes the discussion of more general aspects regarding aircraft and helicopter dynamics, spacecraft attitude dynamics and control.
ASSESSMENT SESSIONS	Exam diets are performed according to current University reguations (3 exam diets at the end of each semester, 1 exam diet in September, 2 extraordinaty exam diets for students who finished the regular course). Exact dates are provided on the University website, as soon as they are available.
OTHER USEFUL INFORMATION	Orario di ricevimento: al termine delle lezioni, oppure previo appuntamento da concordare via e- mail (indirizzo istituzionale giulio.avanzini@unisalento.it). Office hours: at the end of the lectures or arranging a meeting, to be scheduled by sending a request via e-mail to giulio.avanzini@unisalento.it.

FULL SYLLABUS	
TOLL STELADOS	 Equations of motion for rigid aircraft (4 hours).
	 Equilibrium in the longitudinal plane: longitudinal static stability; longitudinal control and trim;
	directional stability and dihedral effect; lateral-directional control; non-symmetric flight (6 hours).
	 Tutorials on trim curves and static stability (4 hours)
	 Dynamic stability: linearization of aircraft equations of motion; stability derivatives; longitudinal
	dynamics; lateral-directional dyanmics (16 hours)
	 Tutorials on dynamic stability and response to controls (4 hours)
	 Nonlinear phenomena: inertial coupling; autorotation; spin (2 hours).
	 Rotary-wing aircraft: helicoper commands; swashplate; flap dynamics (4 hours).
	 Project 1: Laboratory on basic facts in aircraft flight simulation (4 hours)
	 Rigid spacecraft dynamics: free-spinning motion and passive stabilization (4 hours).
	 Rigid spacecraft active control: sensor and actuators; control tecniques (4 hours).
	 Project 2: Laboratory on spacecaft attitude dynamics simulation (4 hours)
REFERENCE TEXT BOOKS	
REFERENCE TEXT BOOKS	Flight Dynamics B. Etkin. <i>Dynamics of Atmospheric Flight</i> . Dover, 2005 (original hardcover edition: , J. Wiley & Sons,
	1972)
	B.L. Stevens, and F.L. Lewis. Aircraft Control and Simulation, 2nd edition, , J. Wiley & Sons, 2003
	R.F. Stengel. <i>Flight Dynamics</i> , Princeton University Press, 2004
	G. Guglieri, and C.E.D. Riboldi. Introduction to Flight Dynamics. CELID, 2014
	M. R. Napolitano. Aircraft Dynamics (from modeling to simulation), J. Wiley & Sons, 2012.
	In Italiano
	M. Calcara, <i>Elementi di Dinamica del Velivolo</i> , Edizioni CUEN, Napoli, 1988
	Suggested readings from
	M.J. Abzug and E.E. Larrabee. Airplane Stability and Control: a History of the Technologies that Made
	Aviation Possible. Cambridge University Press, 1997.
	Handbooks on spacecraft attitude dynamics and control
	Bong Wie. Space Vehicle Dynamics and Control, 2nd ed., AIAA Education Series, 2008

Bong Wie. *Space Vehicle Dynamics and Control*, 2nd ed., AIAA Education Series, 2008 P.C. Hughes. *Spacecraft Attitude Dynamics*, Dover, 2004 (original hardcover edition: , J. Wiley & Sons, 1986)

In Italiano

G. Mengali e A. Quarta. Fondamenti di Meccanica del Volo Spaziale, Pisa University Press, 2013

