MATHEMATICAL ANALYSIS III

Teaching in italian
ANALISI MATEMATICA III
Teaching
MATHEMATICAL ANALYSIS III
Subject area
MAT/05
Reference degree course
MATHEMATICS
Course type
Bachelor's Degree
Credits
9.0
Teaching hours
Frontal Hours: 72.0
Academic year
2024/2025
Year taught
2025/2026
Course year
2
Language
ITALIAN
Curriculum
PERCORSO COMUNE

Teaching description

Teaching program is provisional and may be subject to changes

Contenuti dei corsi di Analisi I e II

Serie e successioni di funzioni, serie di Fourier, Equazioni differenziali ordinarie, Integrazione secondo Lebesgue in R^n. 

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo analitico.

Capacità di applicare conoscenze e comprensione:  essere in grado di produrre  dimostrazioni rigorose di risultati matematici non identici a quelli già conosciuti, ma chiaramente correlati ad essi,  essere in grado di formalizzare matematicamente problemi di moderata difficoltà, in modo da facilitare la loro analisi e risoluzione,  essere capaci di leggere e comprendere, in modo autonomo, testi di base di Analisi Matematica.

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di riconoscere dimostrazioni rigorose e individuare ragionamenti fallaci.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti l’Analisi Matematica, sia in forma scritta che orale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali

Prova scritta e prova orale. La prova scritta consiste nella soluzioni di alcuni esercizi sugli argomenti del corso ed e’ propedeutica a quella orale. La prova orale serve a verificare l’apprendimento dei concetti fondamentali, dei risultati principali, delle tecniche dimostrative nonche’ della capacità di esporre in modo chiaro gli argomenti del corso.

Serie e successioni di funzioni: convergenza puntuale ed uniforme, continuità del limite. Derivazione ed integrazione termine a termine. Somma per parti e formula di Abel. Serie di potenze e raggio di convergnenza. Serie di Taylor e sviluppi in serie notevoli. Continuità sino al bordo. Serie trigonometriche, serie di Fourier, convergenza puntuale ed uniforme.

Equazioni differenziali ordinarie: teorema di esisteza e unicità, Lemma di Gronwall. Metodi di soluzione per equazioni del primo ordine. Soluzioni massimali e criteri di prolungabilità.Equazioni e sistemi lineari, wronskiano. .Studio qualitativo per equazioni del primo ordine. Soprasoluzioni, sottosoluzioni e metodi di confronto.. Metodi di soluzione per alcune equazioni del secondo ordine.

Integrazione seondo Lebesgue  La misura di Lebesgue e le sue proprietà. Funzioni misurabili. Integrale di Lebesgue. Misura prodotto e integrali multipli. Teoremi di passaggio al limite sotto il segno di integrale. Integrazione per serie. Cambiamento di variabili. Integrali dipendenti da parametri.

 

Series and sequences of functions: pointwise  and uniform convergence, continuity of the limit. Term by term differentiation and integration. Summation byr parts and Abel’s formula. Power series and radius of convergence. Taylor series . Continuity up to the boundary. Trigonometric series, Fourier series, pointwise and uniform convergence.

 

Ordinary differential equations: existence and uniqueness theorem, Gronwall’s Lemma. Solution methods for first-order equations. Maximal solutions and prolongability criteria.  Linear  equations and  systems. The  wronskian. Solution methods for some second-order equations.  Qualitative study of first order equations. Sub and super solutions,  comparison methods.

 

Lebesgue's integral:  Lebesgue measure and its properties. Measurable functions. Lebesgue integral. Product measure. Term by term integration. Change of variables in multiple integrals. Integrals depending on parameters.

 

J. P. Cecconi-G. Stampacchia,  Analisi Matematica vol II

E. Giusti: Analisi II

Fusco, Marcellini, Sbordone, Analisi Matematica 2

Dispense di esercizi

Semester

Exam type
Compulsory

Type of assessment
Separate Written and Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)