ISTITUZIONI DI ALGEBRA SUPERIORE

Teaching in italian
ISTITUZIONI DI ALGEBRA SUPERIORE
Teaching
Subject area
MAT/02
Reference degree course
MATHEMATICS
Course type
Master's Degree
Credits
9.0
Teaching hours
Frontal Hours: 63.0
Academic year
2022/2023
Year taught
2022/2023
Course year
1
Language
ITALIAN
Curriculum
TEORICO-MODELLISTICO
Reference professor for teaching
CATINO Francesco
Location
Lecce

Teaching description

Una buona conoscenza e padronanza dei concetti di base dell’Algebra.

Il corso ha come obiettivo principale l’acquisizione di conoscenze e competenze avanzate nell’ambito della Teoria dei Gruppi. Particolare cura è data alla comprensione delle argomentazioni e al rigore nella presentazione dei concetti e dei ragionamenti.

Conoscenze e comprensione. Risultati fondamentali e avanzati di Teoria dei Gruppi e problematiche di ricerca classiche e attuali

Capacità di applicare conoscenze e comprensione: # essere in grado di produrre dimostrazioni rigorose, utilizzando con maturità le varie tecniche dimostrative, # essere in grado di formalizzare e risolvere matematicamente problemi di moderata difficoltà nell’ambito della Teoria dei Gruppi. # essere capaci di leggere e comprendere, in modo autonomo, testi avanzati e articoli di ricerca    nell’ambito della Teoria dei Gruppi.

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di identificare gli elementi rilevanti in situazioni e problemi anche in contesti non matematici, nonché di riconoscere ragionamenti logici erronei.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare in modo chiaro e privo di ambiguità problemi, idee e soluzioni riguardanti la Teoria dei Gruppi, ad un pubblico specializzato o generico.

Capacità di apprendimento. Sarà sollecitato l’approfondimento di argomenti, correlati con l’insegnamento, al fine di stimolare lo studio autonomo su testi avanzati e su articoli di ricerca.

Lezioni frontali ed esercitazioni in aula.

Esame orale. La prova verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso.

Gli studenti dovranno prenotarsi all’esame, utilizzando esclusivamente le modalità on-line previste dal sistema VOL.

Richiami e complementi. Richiami sui gruppi ciclici, automorfismi interni di un gruppo, prodotti semidiretti di gruppi.

Azioni di un gruppo. Azioni di un gruppo su un insieme, equazione delle orbite, i teoremi di Sylow, decomposizioni semidirette con il fattore normale abeliano, il teorema di Schur-Zassenhaus (I parte).

Prime generalità sui gruppi risolubili. Polinomi risolubili per radicali, gruppi risolubili: definizioni ed esempi il teorema di Schur-Zassenhaus (II parte).

Gruppi nilpotenti. Definizione ed esempi, la serie centrale superiore e la serie centrale inferiore, relazione tra la classe di nilpotenza e la lunghezza derivata di un gruppo nilpotente, proprietà di chiusura dei gruppi nilpotenti, un teorema di P.Hall, caratterizzazione dei gruppi nilpotenti finiti.

 Sottogruppi notevoli di un gruppo. Il sottogruppo di Frattini di un gruppo e sue caratterizzazioni, alcune proprietà del sottogruppo di Frattini, il sottogruppo di Frattini di un p-gruppo finito, il sottogruppo di Fitting di un gruppo finito, alcuni risultati sul sottogruppo di Fitting di un gruppo risolubile.

Gruppi risolubili finiti. Basi di Sylow di un gruppo finito, semplicità del gruppo alterno di grado cinque, il gruppo alterno di grado cinque come gruppo privo di basi di Sylow, il lemma di P. Hall sulle basi di Sylow di un gruppo risolubile, i sottogruppi di Hall di un gruppo finito: definizione ed esempi, alcune proprietà dei sottogruppi di Hall, il teorema di Hall per i gruppi risolubili finiti.

Introduzione al GAP.

D.J.K. Robinson,  A Course in the Theory of Groups, Springer-Verlag, New York, 1996

A. Machì,  Gruppi, Springer-Verlag Italia, 2007

Semester
Second Semester (dal 27/02/2023 al 09/06/2023)

Exam type
Compulsory

Type of assessment
Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Component of
FOUNDATIONS OF HIGHER ALGEBRA (LM39)

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)