INTRODUCTION TO MODERN PHYSICS

Teaching in italian
INTRODUZIONE ALLA FISICA MODERNA
Teaching
INTRODUCTION TO MODERN PHYSICS
Subject area
FIS/02
Reference degree course
PHYSICS
Course type
Bachelor's Degree
Credits
8.0
Teaching hours
Frontal Hours: 68.0
Academic year
2022/2023
Year taught
Course year
2
Language
ITALIAN
Curriculum
PERCORSO COMUNE

Teaching description

Teaching program is provisional and may be subject to changes

Meccanica Classica e Fondamenti di elettromagnetismo Classico

Meccanica Analitica, formalismo Lagrangiano, formalismo Hamiltoniano. Integrabilità dei sitemi classici e cenno ai sistemi caotici. Meccanica Relativistica e la trasformazione dei campi.

Avvio allo studio dei fenomeni di interazione Radiazione - Materia: Fenomenologia spettroscopica, Radiazione di corpo nero, effetto fotoelettrico, effetto Compton. Relazioni di Planck-Einstein-de Broglie. Dualismo onda-corpuscolo.

Conoscenze e comprensione. Possedere un appropriato spettro di conoscenze sulla struttura fondante della Meccanica Classica, con particolare accento sulla sua formulazione lagrangiana ed hamiltoniana. La struttura matematica della fisica classica è studiata criticamente dal punto di vista dei fenomeni di propagazione luminosa, che conducono alla struttura cinematica della Relatività Speciale. Da essa si amplia l’analisi alla dinamica relativistica e alla trasformazione dei campi elettromagnetici. I fenomeni ad essi connessi introdurranno la necessità di nuove idee, quali la quantizzazione dell’energia e l’introduzione del concetto di fotone, quale preludio alla Meccanica Quantistica.

Capacità di applicare conoscenze e comprensione: essere in grado di analizzare e risolvere problemi di moderata difficoltà nell’ambito della meccanica analitica, della relatività speciale e della teoria della radiazione di corpo nero e del fotone.
Autonomia di giudizio. La conoscenza diretta di modelli e metodi progressivamente più astratti e generali nell’ambito della Meccanica Classica, porterà lo studente a riconoscerne la presenza, l’efficacia esplicativa e i limiti nell’ accadimento dei fenomeni. I limiti stessi costituiranno la motivazione per un cambiamento dei postulati e la costruzione di una nuova teoria relativistica. Ma ancora l’esercizio ad una analisi critica e attenta della fenomenologia e delle strutture concettuali delle teorie adottate, porrà le basi per nuove revisioni concettuali.

Abilità comunicative: Il corso sarà teso a far apprendere allo studente lo specifico linguaggio descrittivo e modellistico dei sistemi fisici. Inoltre il corso costituirà una palestra per la formalizzazione matematica dei postulati della Meccanica Classica e Relativistica, sapendone esprimere le conseguenze, non necessariamente aderenti al senso comune.

Capacità di apprendimento: Il corso costituirà una base per un approfondimento di argomenti più avanzati, concernenti la meccanica quantistica, le relatività speciale e generale e la teoria dei campi.

Lezioni frontali con esercitazioni

Prova scritta con risoluzione di esercizi. Prova orale a complemento. La prova scritta è intesa superata con 15/30. Lo studente che alla prova scritta abbia ottenuto un voto superiore o uguale a 20/30 può chiedere che esso gli venga registrato come voto dell'esame.
Nelle more delle restrizioni sanitarie connesse all'epidemia di covid-2, in conformità con le disposizioni di Ateneo (https://www.unisalento.it/covid19-informazioni) l'esame potrà essere svolto anche in modalità telematica.

I principi della Meccanica Classica. Gruppo di Galilei. Determinismo Newtoniano.
Invarianza delle Leggi di Maxwell. L'esperimento di Michelson-Morley. Postulati di Einstein. Spazio di Minkowski. Gruppo di Lorentz. Cinematica Relativistica. Composizione delle velocità. Effetto Doppler relativistico. Rotazione di Thomas. Quadrivelocità e quadri-accelerazione. Quadrimomento e invariate relativistico. Particelle di massa propria nulla. Elementi di calcolo tensoriale.
Principi variazionali. Equazioni di Eulero-Lagrange. Cammini estremali in geometria euclidea e minkowskiana.
Meccanica Lagrangiana classica. Teoria dei sistemi vincolati. Principio dei lavori virtuali. Principio di Hamilton e di Minima azione.
Forma normale delle equazioni di Lagrange. Covarianza e Invarianza delle equazioni. Forze dipendenti dalla velocità. Trasformazioni di Legendre. Equazioni di Hamilton.
Lagrangiana di particella libera relativistica. Lagrangiana di particella relativistica in presenza di Campo E.M: Hamiltoniana della particella carica in campo EM..Trasformazioni di gauge in meccanica Hamiltoniana. Elementi di Dinamica Relativistica. Urti relativistici. Trasformazione dei campi elettromagnetici. Tensore elettromagnetico. Cenno alla formulazione variazionale delle equazioni di Maxwell.
Sistemi ad un solo grado di libertà. Il ritratto in fase per sistemi conservativi a un grado di liberta`. Equilibrio e stabilità. Linearizzazione attorno ai punti di equilibrio. Il teorema di Ljapunov. Stabilità globale. Ritratti in fase per sistemi non conservativi. Biforcazioni. Il fenomeno del ciclo limite. Fenomenologia dei moti caotici.
Integrali del moto. Teorema di Noether. Riduzione dei sistemi lagrangiani. Parentesi di Poisson. Struttura Simplettica e di Poisson.
Il corpo rigido di Eulero e di Lagrange. Trasformazioni Canoniche. Funzioni generatrici di trasformazioni canoniche. Equazione di Hamilton-Jacobi. Teorema di Noether nel formalismo hamiltoniano. Le variabili di azione–angolo. Teorema di Liouville - Arnold sull’integrabilità. Sistemi quasi-integrabili. Metodo della media e di Poincaré-Linstedt. Modelli isocroni e non. Teorema KAM. Invarianti adiabatici.
Spettro in emissione ed in assorbimento della radiazione elettromagnetica. Spettri dei gas. Formula di Balmer. Emissione ed assorbimento dei corpi solidi. Legge di Stefan - Boltzmann. Spettro della radiazione di corpo nero. Legge di Wien. Radiazione in cavità. Teoria di Rayleigh-Jeans. Ipotesi di Planck sulla quantizzazione. Distribuzione di Planck e sue conseguenze. Effetto fotoelettrico. Interpretazione di Einstein. Concetto di Fotone. Relazioni di Planck-Einstein. Effetto Compton. Ipotesi di de Broglie. Esperimento di Davisson e Germer. Esperimento di interferenza di singolo fotone e di singolo elettrone. Dualismo onda-corpuscolo e sue conseguenze.

H. Goldstein, C. Poole, J. Safko :" Classical Mechanics"
V.I. Arnold " Metodi matematici della meccanica classica"
G. Benettin:" Appunti di Meccanica Analitica"
Eisberg :" Quantum Physics"
Appunti del corso: si veda Materiale didattico, che saranno aggiornati progressivamente con lo sviluppo del corso.

Semester

Exam type
Compulsory

Type of assessment
Joint Written and Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)