MATHEMATICAL PHYSICS

Teaching in italian
FISICA MATEMATICA
Teaching
MATHEMATICAL PHYSICS
Subject area
MAT/07
Reference degree course
MATHEMATICS
Course type
Bachelor's Degree
Credits
9.0
Teaching hours
Frontal Hours: 63.0
Academic year
2022/2023
Year taught
Course year
3
Language
ITALIAN
Curriculum
PERCORSO COMUNE

Teaching description

Teaching program is provisional and may be subject to changes

Prerequisiti:

Nozioni sullo studio spettrale di matrici (determinazione di autovalori, autovettori, autospazi e diagonalizzazione).

Competenza sulla risoluzione di sistemi lineari di equazioni differenziali ordinarie a coefficienti costanti.

Nozione di curva, superficie e spazio tangente.

Nozioni di meccanica: equazioni di Newton, energia totale, energia potenziale, momento e quantita' di moto. Nozioni sulla meccanica del corpo rigido. Capacita' di ricavare le equazioni del moto per semplici sistemi di punti o corpi rigidi.

 

Nella prima parte del corso si trattera' lo studio qualitativo delle equazioni differenziali ordinarie, nella seconda una introduzione alla meccanica lagrangiana.

In the first part of the course will be presented fundamental concepts and results at the basis of the qualitative theorey of ordinary differential equations; the second part consists in an introduction to Lagrangian mechanics.

Conoscenze e comprensione. Acquisizione di concetti,  risultati e metodi fondamentali nello studio della fisica matematica, sia per quanto riguarda l'area dei sistemi dinamici sia per quanto riguarda i sistemi lagrangiani .

Capacità di applicare conoscenze e comprensione: 
1 . Capacità di comprendere in modo autonomo testi  di argomento fisico-matematico, siano essi libri di testo introduttivi o semplici articoli specialistici.
2.  Capacità di dimostrare risultati matematici correlati a quelli spiegati durante il corso e di reperire autonomamente, ove necessario,  le  informazioni  necessarie alla soluzioni di semplici problemi in ambito fisico-matematico. 

3.  Capacità  di formalizzare matematicamente, analizzare e risolvere problemi di moderata difficoltà.

Autonomia di giudizio. Le modalità di esposizione dei contenuti sono finalizzate  a migliorare la capacità  critica degli studenti, necessaria al lavoro matematico, per esempio nell' analizzare la correttezza di una dimostrazione o  la rilevanza di un metodo o di  un'argomentazione relativamente all'ambito in cui si lavora.

Abilità comunicative. La modalità di esposizione dei contenuti del corso è volta anche ad educare gli studenti all'uso di un corretto linguaggio  matematico  e ad una efficace comunicazione di problemi, questioni e risultati scientifici.

Capacità di apprendimento Nel corso delle lezioni verranno proposti esercizio correlati con gli argomenti  trattati affinché studenti e studentesse possano applicare e sperimentare in modo autonomo quanto appreso durante il corso.

 

Lezioni frontali

L'esame è orale.
Nel corso dell'esame si richiederà l'esposizione di argomenti teorici, in particolare teoremi con semplici dimostrazioni, per verificare la compresione della teoria e la padronanza del ragionamento dimostrativo.
Inoltre si proporranno problemi ed esercizi per verificare la padronanza profonda degli strumenti matematici esposti durante il corso e la capacità da parte degli esaminandi di risolvere quesiti matematici in autonomia.

Come per gli anni passati gli studenti potranno anche anche fare riferimento ad un blog dedicato per informazioni specifiche.

A dedicated blog with infos and material will be set up.
 

Orario di ricevimento :
Martedi', dalle 13 alle 14, da ottobre a dicembre 2020 (consiglio di mandare un e-mail per prenotarsi).

In altri periodi previo appuntamento.

Office Hours: Tuesday 13-14.

In Italiano:

1 Studio qualitativo di sistemi di equazioni differenziali ordinarie.

Definizione spazio delle fasi, soluzione, orbita per sistemi di ODE al primo ordine (o sistema dinamico).
Teorema di Cauchy-Kowalevskaya; dipendenza continua dai dati iniziali e dai parametri.

Definizione e proprieta’ del flusso.

Integrali primi; derivata di Lie.

Stabilita’: funzione di Lyapunov e secondo teorema di stabilita’ di Lyapunov. Teorema di Lagrange-Dirichlet

Ritratto in fase di sistemi meccanici con un grado di liberta.

 

Esponenziale di una matrice e soluzioni di un

sistema dinamico lineare, con particolare

attenzione al caso diagonalizzabile.

Classificazione dell’equilibrio di un sistema lineare piano.

Stabilita’ dell’equilibrio di un sistema lineare n-dimensionale. Definizione

di sottospazi stabili,instabili e centrali. Definizione di matrice iperbolica

o ellittica; definizione di equilibrio iperbolico.

Equilibrio in sistemi non lineari:

Il teorema di Hartman-Grobman.
Il teorema della varietà stabile.

Primo teorema di Lyapunov.


Cicli limite.

Teorema di Poincaré-Bendixson.
 

Biforcazioni in un sistemi mono e bidimensionale. Biforcazione tangente,

transcritica, a forchetta.
Biforcazione di Hopf .

 

2 Elementi di meccanica lagrangiana

 

Introduzione e motivazione del formalismo lagrangiano.

Equazioni di Lagrange per N punti materiali soggetti a vincoli ideali fissi

o dipendenti dal tempo

Coordinate cicliche. Lagrangiane ridotte.

Il teorema di Noether.

Lagrangiana per un corpo rigido.

Piccole oscillazioni per problemi lagrangiani; modi normali dioscillazione.

Equazione di Eulero-Lagrange e principio di minima azione.
 

3 Introduzione al formalismo Hamiltoniano.

• Dalle equazioni di Lagrange alle equazioni di Hamilton attraverso la trasformata

di Legendre.

• Struttura simplettica del campo Hamiltoniano.

• Proprietà del flusso Hamiltoniano. Teorema di Liouville.

• Teorema del ritorno di Poincaré nel caso di flusso Hamiltoniano.

• Definizione di prodotto scalare simplettico. Definizione di parentesi di

Poisson e loro proprietà; identità di Jacobi. Parentesi di Poisson fondamentali

• Definizione di trasformazioni canoniche.

• Caratterizzazione di una trasformazione strettamente canonica attraverso

la matrice Jacobiana.

• Caratterizzazione di una trasformazione strettamente canonica attraverso

la conservazione delle parentesi di Poisson.

• Funzioni generatrici di trasformazioni canoniche

• Definizione di sistemi integrabili.

• Variabili azione-angolo in casi semplici

• L’equazione di Hamilton-Jacobi.

 


In English:

 

1. Qualitative Theory for ordinary differential equations
 

Definition of phase space, solution and orbit for a system of ODEs (dynamical system).

Cauchy - Kowalevskaya theorem; continuous dependence of solutions from initial data and parameters .

Definition and properties of the flow .

First integrals and Lie derivative.
Stability: Lyapunov function and second Lyapunov theorem; Lagrange - Dirichlet theorem

Phase portrait of mechanical systems with one degree of freedom.

Exponential of a matrix and solutions of a linear dynamic system.

Classification of equilibria of a linear plane system.

Stability of an n-dimensional linear system; stable, unstable and central subspaces.

Stability in non- linear systems: the Hartman - Grobman theorem, the stable manifold theorem, first Lyapunov theorem.

Limit cycles and Poincaré-Bendixson theorem .

Bifurcations in one and two-dimensional systems: tangent, transcritical and pitchfork bifurcation.

Hopf bifurcation.

 

2. Introduction to Lagrangian mechanics

Introduction and motivation of the Lagrangian formalism.

Lagrange equations for N points under ideals constraints.

Cyclic coordinates and reduced Lagrangian .

Noether's theorem .

Lagrangian for a rigid body .

Small oscillations and normal modes of oscillation.

Euler- Lagrange equations and the principle of minimum action.

3 Introduction to Hamiltonian systems
.- From Lagrange's equations to the Hamiltonian equations via the Legendre transform.
- Symplectic structure of the Hamiltonian field.
- Properties of Hamiltonian flow. Liouville's theorem.
- Poincaré return theorem in the case of Hamiltonian flow.
- Definition of symplectic scalar product. Definition of Poisson brackets and their properties; Jacobi identity. Fundamental Poisson brackets.
- Definition of canonical transformations.
- Characterisation of a strictly canonical transformation through the Jacobian matrix.
- Characterisation of a strictly canonical transformation through the conservation of Poisson brackets.
- Generating functions of canonical transformations
- Definition of integrable systems.
- Action-angle variables in simple cases-
The Hamilton-Jacobi equation.

Testi di riferimento:

G.Benettin, L.Galgani, A.Giorgilli, Appunti di Meccanica Razionale, Ed. Progetto, Padova

A.Celletti, Esercizi di meccanica razionale, Aracne, Roma (2003)

P.Glendinning, Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press (1994)

M.Hirsch, S.Smale, R.Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos, III Edition, Elsevier (2012)

L. Perko, Differential Equations and Dynamical Systems, III Edition, Springer (2001).

S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, II edition, Westview Books (2015)

Per la parte Hamiltoniana possono anche essere utili:
F. Scheck, Mechanics: from Newton's laws to deterministic chaos, Springer (qualunque edizione)
A. Fasano, S. Marmi, Meccanica Analitica, Bollati Boringhieri.
J.V. José, E.J. Salentan, Classical dynamics:a contemporary approach, Cambridge University Press
 

Semester

Exam type
Compulsory

Type of assessment
Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)