AUTOMATED PLANNING AND DECISION SUPPORT SYSTEMS

Teaching in italian
PIANIFICAZIONE AUTOMATICA E SISTEMI DI SUPPORTO ALLE DECISIONI
Teaching
AUTOMATED PLANNING AND DECISION SUPPORT SYSTEMS
Subject area
MAT/09
Reference degree course
COMPUTER ENGINEERING
Course type
Master's Degree
Credits
12.0
Teaching hours
Frontal Hours: 108.0
Academic year
2022/2023
Year taught
2022/2023
Course year
1
Language
ITALIAN
Curriculum
PERCORSO COMUNE
Reference professors for teaching
GHIANI GIANPAOLO
MANNI Emanuele
Location
Lecce

Teaching description

Conoscenze approfondite di Analisi Matematica, Algebra Lineare, Calcolo delle Probabilità, programmazione in linguaggi procedurali e a oggetti. Conoscenze di base di Statistica.

Il corso fornisce i fondamenti metodologici e la conoscenza delle soluzioni tecnologiche per realizzare e mettere in opera sistemi intelligenti che supportino o automatizzino decisioni complesse. Le applicazioni trattate spaziano dalla promozione delle vendite nell'e-commerce alla pianificazione della produzione nel settore manifatturiero, dall'ottimizzazione di portafogli di asset nel settore finanziario alla gestione real-time di AGV (veicoli a guida automatica) in magazzini automatizzati, ... Le metodologie presentate spaziano dalla Ricerca Operativa alla Statistica fino all'Intelligenza Artificiale.

Knowledge and understanding. Lo studente acquisirà le conoscenze di base per progettare e mettere in opera sistemi intelligenti che supportino o automatizzino decisioni complesse.

Applying knowledge and understanding. Al termine del corso, lo studente sarà in grado di progettare e implementare in C++ o Python un mock-up dei più comuni sistemi di supporto alle decisioni.

Il corso consiste di lezioni frontali, esercitazioni in classe e assegni a casa (home assignments). Le lezioni frontali forniscono i fondamenti metodologici con l'utilizzo della lavagna e/o slide. Le esercitazioni in classe e gli assegni a casa richiedono l'uso di applicativi SW o lo sviluppo di brevi codici in C++ o Python. Gli studenti sono invitati a partecipare attivamente al corso risolvendo i problemi assegnati dal docente.

L'esame consiste di due parti:

  • una prova scritta con 15 domande a risposta breve (15 punti);
  • una prova orale in cui lo studente illustri lo svolgimento dei problemi/esercizi/approfondimenti assegnati dal docente a lezione (reperibili su www.elearning.unisalento.it)

Disponibili su www.studenti.unisalento.it

Ricevimento studenti

Gli studenti sono caldamente invitati a chiedere spiegazioni in caso di dubbi, ... Il docente riceve, di regola, tutti i martedì alle 11:00, in presenza (Corpo O, 2° piano, Studio O-202) o su piattaforma Teams. Prima di venire a ricevimento, verificare con una e-mail (a gianpaolo.ghiani@unisalento.it) che il docente sia effettivamente in sede nella data richiesta.

PART I – INTRODUZIONE (6 ore)
1.1 Introduzione: dati, informazioni, conoscenza; tassonomia delle decisioni, classificazione dei metodi di supporto alle decisioni
1.2 Agenti intelligenti

 

PART II – TUTORIAL SUL LINGUAGGIO PYTHON (6 ore)
2.1 La sintassi del linguaggio. Librerie. Ambienti di sviluppo.

 

PART III – OTTIMIZZAZIONE (27 ore)
3.1 Concetti fondamentali. Rassegna di modelli di ottimizzazione nei settori della logistica, della produzione, dei trasporti, dell'e-commerce, della finanza. Ottimizzazione Convessa. Programmazione Lineare. Programmazione Lineare a Variabili Intere. 


PART IV – SIMULAZIONE (21 ore)
4.1 Valutazione delle prestazioni: sperimentazione, simulazione e metodi analitici. Simulazione Monte Carlo. Simulazione ad Eventi Discreti.
4.2 Cenni su alcuni metodi analitici
4.3 Richiami su stima e test di ipotesi
4.4 Generazione di numeri pseudocasuali
4.5 Simulazione ad eventi discreti: analisi dell'output, cenni sui metodi di riduzione della varianza

 

PART V - PLANNING (27 ore)
5.1 Search. Search uninformed e informed. A* algorithm.  Action languages e linguaggio STRIPS.
5.2 Dynamic Programming (DP)
5.3 Algoritmi euristici. Local search. Tabu Search. Simulated Annealing. Algoritmi Genetici. GRASP
5.4 Elementi di Adversarial Search e Game Theory.
5.5 Elementi di logica proposizionale e del I ordine. Elementi di Constraint Programming.


PART VI - PLANNING IN CONDIZIONI DI INCERTEZZA (21 ore)
6.1 Matrice dei reward. Criterio del max-min, del min-max. di Bayes. Valore atteso della perfetta informazione
6.2 Attitudine del decisore al rischio. Downside risk.
6.3 Processi Decisionali Sequenziali
6.4 Cenni sulla DP in condizioni di incertezza e Reinforcement Learning

Slides e snippets utilizzati a lezione (disponibili su http://elearning.unisalento.it/

Per consultazione:

  • Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, 2016.

Semester
First Semester (dal 19/09/2022 al 16/12/2022)

Exam type
Compulsory

Type of assessment
Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)