MATHEMATICAL ANALYSIS 2

Teaching in italian
ANALISI MATEMATICA II
Teaching
MATHEMATICAL ANALYSIS 2
Subject area
MAT/05
Reference degree course
CIVIL ENGINEERING
Course type
Bachelor's Degree
Credits
9.0
Teaching hours
Frontal Hours: 81.0
Academic year
2022/2023
Year taught
Course year
2
Language
ITALIAN
Curriculum
PERCORSO COMUNE

Teaching description

Teaching program is provisional and may be subject to changes

Sono propedeutici i contenuti dei corsi di Analisi Matematica 1 e Geometria ed Algebra

Serie numeriche. Successioni e serie di funzioni. Limiti e continuità in più variabili. Calcolo differenziale in più variabili. Curve e integrali di linea. Equazioni differenziali ordinarie. Campi vettoriali. Integrali multipli. Superfici di R^3 e integrali superficiali.

Conoscenze e comprensione. Il corso si propone di fornire, in maniera rigorosa e nello stesso tempo sintetica, gli argomenti di base del calcolo differenziale e integrale per funzioni di più variabili e  di illustrare le loro applicazioni alla risoluzione di problemi basati su modelli matematici. In particolare, il corso si propone di fornire gli strumenti metodologici e operativi adeguati per poter interpretare, descrivere e risolvere problemi matematici di interesse dell'Ingegneria Civile.

Capacità di applicare conoscenze e comprensione. Dopo aver seguito  il corso lo studente dovrebbe essere in grado di conoscere, comprendere e saper utilizzare i contenuti fondamentali presentati. In particolare, lo studente dovrebbe essere in grado capace di analizzare, comprendere e risolvere problemi del tipo:

-Determinazione degli estremi relativi e assoluti (vincolati o no) di funzioni reali di più variabili reali;

-Calcolo integrali di linea, integrali di superficie, integrali doppi, tripli ;

-Determinazione di primitive di campi conservativi;

-Determinazione dell'integrale generale di classi fondamentali di equazioni differenziali;

-Studio del tipo di convergenza di successioni e di serie di funzioni.

Autonomia di giudizio. Alla fine del corso, lo studente deve possedere la capacità di elaborare dati complessi e/o frammentari e deve pervenire a idee e giudizi originali e autonomi, a scelte coerenti nell’ambito del proprio lavoro. Il corso promuove lo sviluppo dell’autonomia di giudizio nella scelta appropriata della metodologia per la risoluzione dei problemi  matematici e la capacità critica di individuare la strategia più adeguata.

Abilità comunicative.  Lo  studente deve essere in grado di comunicare con un pubblico vario e composito, non omogeneo culturalmente, in modo chiaro, logico ed efficace, utilizzando gli strumenti metodologici acquisiti e le conoscenze scientifiche.

Capacità di apprendimento.  Lo studente deve essere in grado di rielaborare, aggiornare e  applicare autonomamente le  conoscenze e i metodi appresi in vista di un’eventuale prosecuzione degli studi a livello superiore o nella più ampia prospettiva di auto-aggiornamento culturale e professionale dell'apprendimento permanente.

Lezioni frontali ed esercitazioni in aula

L’esame consiste di due prove in cascata; 4 o 5 esercizi nella prima e 3 quesiti teorici nella seconda. La seconda prova scritta può essere sostituita da un'interrogazione orale, a richiesta dello studente. Ogni prova è superata riportando un punteggio maggiore o uguale a 18/30. L'esame è superato se ambedue le prove sono state superate. 

Programma del corso

1. Serie numeriche: somma di una serie. Serie a termini positivi e relativi criteri: confronto, radice, rapporto. Criterio di Cauchy. Convergenza assoluta. Serie a segni alternati e criterio di Leibniz.

2. Successioni e serie di funzioni. Convergenza puntuale e uniforme di successioni di funzioni. Teorema di continuità della funzione somma. Teorema di passaggio al limite sotto il segno di integrale e di derivata. Convergenza puntuale, assoluta puntuale, uniforme e totale di serie di funzioni. Teorema di continuità della funzione somma, di integrazione per serie e di derivazione per serie. Serie di potenze. Serie di Taylor. Serie di Fourier. 

3. Topologia di R^n e continuità: Intorni, insiemi aperti, insiemi chiusi, parte interna, chiusura, frontiera. Successioni di R^n. Insiemi compatti. Insiemi connessi per poligonali, convessi, stellati. Limiti di funzioni di più variabili. Funzioni continue. Teorema di Weierstrass, Teorema di Heine-Cantor. 

4. Calcolo differenziale di funzioni reali o vettoriali in più variabili: Derivate direzionali e parziali, differenziale e gradiente; conseguenze della differenziabilità. Teorema del differenziale totale. Derivata della funzione composta-caso scalare e caso vettoriale. Derivate successive e teorema di Schwartz. Formula di Taylor di 2° grado. Massimi e minimi in piu’ variabili: condizioni necessarie e condizioni sufficienti. Funzioni vettoriali e matrice Jacobiana. Cambiamenti di coordinate. Grafici, versore normale. Estremi vincolati; moltiplicatori di Lagrange. 

5. Curve nello spazio e integrali di linea: Curve regolari. Lunghezza di una curva. Integrale curvilineo di funzione reali e di funzioni vettoriali. Campi irrotazionali e conservativi. Potenziali. 

6. Equazioni differenziali ordinarie. Teorema di esistenza e unicità locale. Teorema di esistenza globale. Equazioni differenziali lineari: metodo della variazione dei parametri, metodi di calcolo della soluzione fondamentale nel caso di coefficienti costanti. Matrice Wronskiana. Casi particolari di equazioni non lineari del primo e del secondo ordine. 

7. Integrali multipli. Formule di riduzione ed insiemi normali. Insiemi normali del piano e integrali doppi. Insiemi normali nello spazio e integrali tripli. Cambiamenti di coordinate. Aree e volumi. Integrali per funzioni e insiemi illimitati. Superficie regolari e integrali di superficie. Area di una superficie regolare. Teorema della divergenza e Formula di Stokes. 

A. Albanese, A. Leaci, D.Pallara: Appunti del corso di Analisi Matematica 2.

G. Anichini, G. Conti: Analisi Matematica 2, Pearson.

N. Fusco, P. Marcellini, C. Sbordone: Analisi Matematica 2, Liguori Editore.

M. Boella: Analisi Matematica 2, Esercizi, Pearson.

P. Marcellini, C. Sbordone: Esercitazioni di matematica, vol. II, Liguori Editore.

Semester

Exam type
Compulsory

Type of assessment
Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)