MATHEMATICAL ANALYSIS I

Teaching in italian
ANALISI MATEMATICA I
Teaching
MATHEMATICAL ANALYSIS I
Subject area
MAT/05
Reference degree course
INFORMATION TECHNOLOGY ENGINEERING
Course type
Bachelor's Degree
Credits
12.0
Teaching hours
Frontal Hours: 108.0
Academic year
2022/2023
Year taught
2022/2023
Course year
1
Language
ITALIAN
Curriculum
PERCORSO COMUNE
Reference professor for teaching
SPINA CHIARA
Location
Lecce

Teaching description

Nozioni di base di trigonometria, sulle equazioni e disequazioni algebriche,  fratte, irrazionali,  sui sistemi di disequazioni.

ll corso ha come obiettivo principale l'acquisizione di competenze di base nell'ambito dell' analisi matematica, ed in particolare dei concetti di limiti, continuità, derivabilita, integrazione per funzioni reali di variabile reale.

Conoscenze e comprensione. Acquisire una solida preparazione con un ampio spettro di conoscenze di base nell'ambito dell'Analisi Matematica.

Capacità di applicare conoscenze e comprensione: 

  • essere in grado di produrre semplici dimostrazioni rigorose di risultati di Analisi Matematica.
  •  essere in  grado di leggere e comprendere, in modo autonomo, testi di base di Analisi Matematica.
  • essere in grado di risolvere esercizi di base di Analisi Matematica (studi di funzione, calcolo di limiti, studi di serie numeriche, integrazione) 

Autonomia di giudizio. L’esposizione dei contenuti e delle argomentazioni sarà svolta in modo da migliorare la capacità dello studente di riconoscere dimostrazioni rigorose e individuare ragionamenti fallaci.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni riguardanti l’Analisi Matematica, sia in forma scritta che orale.

Capacità di apprendimento.  La capacità di apprendimento  dello studente sarà stimolata  proponendo esercizi, anche teorici,  da risolvere autonomamente.

Lezioni frontali ed esercitazioni in aula

Una prova scritta su esercizi ed una prova scritta su tre argomenti di teoria con eventuali domande orali.

Alla prova di teoria lo studente accede se ha conseguito la votazione di almeno 18 nella prova di esercizi.  La prova  di teoria deve essere sostenuta nello stesso appello o in quello immediatamente successivo di quella scritta, comunque all'interno della stessa sessione. Se lo studente non supera la prova di teoria, dovrà ripetere anche la prova scritta sugli esercizi.

Per poter partecipare all'esame è necessario prenotarsi usando la procedura online.

Capitolo 1. Elementi di teoria degli insiemi. Funzioni: definizioni generali. Funzioni reali di una variabile reale. Funzioni monotone,
funzioni crescenti e decrescenti. Funzioni elementari. Numeri complessi. Elementi di logica. 

Capitolo 2. Successioni: definizione, definizione di limite, proprietà principali. Successioni definite per ricorrenza.

Capitolo 3. Funzioni reali di una variabili reale. Limiti. Continuità. Teoremi fondamentali sulle funzioni continue. 

Capitolo 4. Funzioni derivabili. Calcolo differenziale. Teoremi fondamentali sulle funzioni derivabili. Studio di una funzione.

Capitolo 5. Calcolo integrale. Primitive e loro proprietà.. Integrale definito,funzioni integrabili secondo Riemann. Metodi di integrazione e applicazioni. 

Capitolo 6. Serie numeriche: definizione di serie, serie convergente, divergente, indeterminata. Criteri di convergenza. 

Capitolo 7. Successioni e serie di funzioni. Teoremi fondamentali.  Serie di potenze, Serie di Taylor, Serie di Fourier.

 

 

(Vedere la Sezione materiale didattico contenente il file PDF del programma esteso)

A. Albanese, A.Leaci e D.Pallara, Appunti del corso di Analisi Matematica I

M.Bramanti, C.D.Pagani e S.Salsa: Analisi Matematica 1, Zanichelli, Bologna, 2008.

P.Marcellini, C.Sbordone: Analisi Matematica uno, Liguori Editore, Napoli, 1998.

P.Marcellini, C.Sbordone: Esercitazioni di Matematica, Volume 1, parte I-IV, Liguori Editore,  Napoli, 2009.

Semester
First Semester (dal 19/09/2022 al 16/12/2022)

Exam type
Compulsory

Type of assessment
Oral - Final grade

Course timetable
https://easyroom.unisalento.it/Orario

Download teaching card (Apre una nuova finestra)(Apre una nuova finestra)