PROBABILITA'
- Insegnamento
- PROBABILITA'
- Insegnamento in inglese
- PROBABILITY
- Settore disciplinare
- MAT/06
- Corso di studi di riferimento
- MATEMATICA
- Tipo corso di studio
- Laurea Magistrale
- Crediti
- 9.0
- Ripartizione oraria
- Ore Attività Frontale: 63.0
- Anno accademico
- 2020/2021
- Anno di erogazione
- 2020/2021
- Anno di corso
- 1
- Lingua
- ITALIANO
- Percorso
- PERCORSO COMUNE
- Docente responsabile dell'erogazione
- SEMPI Carlo
Descrizione dell'insegnamento
I prerequisiti sono i corsi della laurea triennale, in particolare, quelli di Analisi matematica
Convergenza stocastica. Funzioni caratteristiche. Teoremi limite: Leggi deboli e forti dei grandi Numeri (LGN) e Teoremi del Limite Centrale (TLC). Introduzione alla martingale
Mettere in grado gli studenti di comprendere almeo il linguaggio e i problemi della moderna letteratura scientifica sulla probabilità
Lezioni frontali e svolgimento di un numero piuttosto alto di esercizî che approfondiscano i risultati illustrati a lezione.
Esame orale in data da concordare con gli studenti
Da concordare con gli studenti
Richiami di misura e integrazione, con particolare attenzione alla misura immagine e al teoream di Radon-Nikodym. I Lemmi di Borel-Cantelli. Varî modi di convergenza stocastica: quasi certa, in probabilità, il L^p, in legge. Convergenze vaga e stretta. Funzioni caratteristiche (f.c): Corrispondenza biunivoca tra funzioni di ripartizione e f.c.. Momenti e f.c.. F.c. della somma di variabili aleatorie indipendenti. Il teorema di continuità di Lévy-Cramér. Cenno al teorema di Bochner. Teoremi limite: Leggi dei Grandi numeri(LGN), LGN deboli. LGN forti: teoremi di Rajchman,di Kolmogorov, di Khinchin-Kolmogorov. Teoremi del Limite Centrale (TLC): Teorema di Lindeberg, suoi corollarî e sue conseguenze. Cenno a condizioni necessarie per TLC. Speranza condizionate: definizione e proprietà. Introduzione alle Martingale: definizione e esempî di martingale e sottomartingale. Martingale quadratiche. Teorema di decomposizione di Doob. Trasformate di martingale. Martingale uniformememente integrabili. Convergenza in L^1. Convergenza quasi certa: teorema di Doob. Convergenza delle sottomartingale. Applicazioni: nuova dimostrazione del teorema di Radon-Nikodym, convergenza di serie aleatorie, martingale rovesciate e LGN forti, legge 0-1 di Kolmogorov, rovina del giocatore, urna di Pólya.
Oltre algi appunti disponibili in rete consiglio i seguenti testi
D.Williams, Probability with martingales, Cambridge University Press, 1991
J. Jacod, Ph. Protter, Probability essentials. Springer, 2000
R.M. Dudley, Real analysis and probability, Wadsworth & Cole, Pacific Grove CA, 1989
Semestre
Secondo Semestre (dal 22/02/2021 al 28/05/2021)
Tipo esame
Non obbligatorio
Valutazione
Orale - Voto Finale
Orario dell'insegnamento
https://easyroom.unisalento.it/Orario