- Engineering for Innovation
- Bachelor's Degree in CIVIL ENGINEERING
- Mathematical analysis
Mathematical analysis
- Teaching in italian
- ANALISI MATEMATICA
- Teaching
- Mathematical analysis
- Subject area
- MAT/05
- Reference degree course
- CIVIL ENGINEERING
- Course type
- Bachelor's Degree
- Credits
- 9.0
- Teaching hours
- Frontal Hours: 81.0
- Academic year
- 2024/2025
- Year taught
- 2024/2025
- Course year
- 1
- Language
- ITALIAN
- Curriculum
- PERCORSO COMUNE
- Reference professors for teaching
- CAMPITI Michele
FERRARI SIMONE
- Location
- Lecce
Teaching description
Il corso richiede le conoscenze previste nei test di ingresso alle Facoltà di Ingegneria e in particolare nozioni elementari di logica, teoria degli insiemi, algebra elementare, geometria euclidea, operazioni con polinomi e radici, i principali concetti di trigonometria, funzioni elementari (polinomiali, esponenziali, logaritmiche e trigonometriche) e lo studio di equazioni e disequazioni, in particolare razionali, irrazionali, esponenziali, logaritmiche, trigonometriche.
Insiemi e strutture algebriche. Funzioni. Insiemi numerici. La retta reale. Numeri complessi. Funzioni reali. Funzioni elementari. Equazioni e disequazioni. Limiti. Successioni. Continuità. Calcolo differenziale. Studio del grafico di una funzione reale. Calcolo integrale.
L'obiettivo del corso è quello di fornire una solida preparazione di base sui concetti fondamentali dell'analisi matematica e della geometria e in particolare per i capitoli che riguardano lo studio delle funzioni reali, i loro limiti, il calcolo differenziale, le strutture algebriche e l'algebra delle matrici. Le basi fornite sono finalizzate sia ai corsi successivi di matematica che ai corsi di ingegneria. Rispetto a tali conoscenze lo studente deve acquisirein particolare:
Knowledge and understanding. dovrà conoscere le definizioni e risultati fondamentali dell'analisi matematica in una variabile, della geometria e dell'algebra lineare ed essere in grado di comprendere come questi possono essere utilizzati nella risoluzione di problemi
Applying knowledge and understanding. dovrà essere in grado di applicare le conoscenze acquisite per la risoluzione di problemi anche mediamente elaborati, e di comprenderne l'uso nei corsi applicativi.
Making judgements. dovrà essere in grado di valutare la coerenza e correttezza dei risultati ottenuti o fornitigli.
Communication. dovrà essere in grado di comunicare in modo chiaro e preciso anche al di fuori di un contesto di calcolo.
Learning skills. Lo studente dovrà essere in grado di impostare matematicamente e risolvere problemi riconducibili a conoscenze relative ai contenuti del corso.
Le lezioni vengono tenute utilizzando supporti informatici che consentono la registrazione degli appunti che vengono messi a disposizione sul presente sito (alla voce "Altre informazioni utili"). Di ogni argomento vengono trattati prima gli aspetti teorici seguiti dalle applicazioni e dagli esercizi.
L’esame consiste in una prova scritta e in una prova orale e tali prove si svolgono in giorni distinti e prefissati; le date sono disponibili nel calendario degli esami del proprio Corso di Studi. La prova orale viene sostenuta solo dopo aver superato la prova scritta. Per accedere ad entrambe le prove bisogna prenotarsi sull’apposito portale degli studenti. Non è possibile sostenere la prova scritta se è stato assegnato un debito formativo in Analisi Matematica non ancora superato.
Prova scritta – Consiste nello svolgimento di alcuni esercizi tra cui, a titolo di esempio: Numeri complessi, Limiti, Studio di funzioni, Integrali (solo di carattere elementare).
Prova orale – Riguarda contenuti di carattere teorico (definizioni, teoremi e proprietà svolte a lezione); il contenuto è precisato dal programma del corso disponibile nella Scheda del corso (nell’elenco dei documenti disponibili nella sezione Corsi). Vengono richiesti solo gli argomenti effettivamente trattati a lezione (comprese le dimostrazioni svolte). La prova orale è costituita da due parti che vengono svolte di seguito nello stesso giorno: una prima parte nella quale si risponde ad alcuni quesiti teorici (in genere due o tre) in forma scritta e una seconda parte che consiste in un vero e proprio colloquio; il colloquio finale non riguarda necessariamente gli argomenti assegnati in forma scritta. Ai fini della valutazione il colloquio finale è essenziale.
Validità della prova scritta – Il non superamento della prova scritta non ha conseguenze sugli appelli successivi (NON è previsto alcun salto d’appello). La prova orale può essere sostenuta in un appello successivo a quello della prova scritta purché ricadente nello stesso periodo di esami. I periodi di esame sono: 1) gennaio-febbraio, 2) aprile (fuori corso), 3) giugno-luglio, 4) settembre, 5) ottobre-novembre (fuori corso). Ad esempio chi supera la prova scritta nel primo appello del periodo gennaio-febbraio può sostenere la prova orale nello stesso primo appello oppure nel secondo o nel terzo appello sempre tra gennaio e febbraio; chi supera invece la prova scritta nel secondo appello può utilizzare solo le prove orali del secondo e del terzo appello di gennaio-febbraio e infine chi supera la prova scritta nel terzo appello del periodo gennaio-febbraio deve sostenere la prova orale nello stesso terzo appello; le prove scritte quindi non valgono in nessun caso per periodi successivi a quello in cui sono state svolte. Inoltre la prova scritta può essere utilizzata per una sola prova orale e quindi se non si supera la prova orale bisogna sostenere nuovamente anche la prova scritta.
Insiemi e strutture algebriche. Sottoinsiemi, intersezione, unione, complementare e differenza. Prodotto cartesiano. Relazioni. Relazioni di equivalenza e d’ordine.
Funzioni. Relazioni funzionali. Definizione di funzione. Immagini dirette e reciproche. Funzioni iniettive, suriettive e biiettive. Funzioni composte. Funzioni inverse. Equivalenza tra funzioni invertibili e biiettive.
Insiemi numerici. Proprietà algebriche e d'ordine. Numerabilità degli insiemi numerici. Proprietà di buon ordine dei numeri naturali. Principio di induzione completa e applicazioni. L'insieme dei numeri interi. L'insieme dei numeri razionali. Rappresentazione decimale. Insiemi separati. Non completezza dell'insieme dei numeri razionali. L'insieme dei numeri reali. Proprietà di completezza. Esistenza della radice n-esima. Proprietà di non numerabilità.
La retta reale. Intervalli limitati, non limitati e centrati. Insiemi limitati superiormente e inferiormente. Massimo e minimo di un sottoinsieme. Estremi inferiore e superiore. Seconda forma dell'assioma di completezza. Intorni e punti di accumulazione. L'insieme ampliato dei numeri reali. Intorni e punti di accumulazione nella retta ampliata. Valore assoluto e distanza nell'insieme dei numeri reali. Rappresentazione geometrica.
Numeri complessi. Forma geometrica ed operazioni algebriche. Modulo e coniugato. Coordinate polari. Forma trigonometrica ed operazioni in forma trigonometrica. Radici di un numero complesso.
Funzioni reali. Proprietà algebriche. Funzioni limitate superiormente e inferiormente. Massimi e minimi relativi ed assoluti. Estremi di una funzione. Seconda forma dell'assioma di completezza. Funzioni monotone e proprietà. Funzioni monotone in un punto e relazioni con la proprietà globale. Funzioni pari, dispari, periodiche. Successioni e numero di Nepero.
Funzioni elementari. Definizioni e grafici.
Equazioni e disequazioni. Equazioni e disequazioni razionali, con radici, con valore assoluto e metodo grafico.
Limiti. Unicità e prime proprietà. Limiti destri e sinistri e proprietà. Teoremi di confronto per i limiti. Operazioni sui limiti: limite della somma, del prodotto, della reciproca e del quoziente. Limite delle funzioni composte. Limiti delle funzioni monotone. Limiti delle funzioni elementari. Forme indeterminate. Limiti notevoli. Infinitesimi ed infiniti e regola di sostituzione.
Successioni. Limitatezza delle successioni convergenti. Teorema sul limite delle successioni monotone. Caratterizzazione del limite mediante successioni e applicazioni. Esistenza di estratte regolari e di estratte convergenti. Teorema di Bolzano-Weierstrass. Successioni di Cauchy e criterio di convergenza di Cauchy.
Continuità. Punti di discontinuità. Operazioni sulle funzioni continue. Continuità delle funzioni composte. Continuità delle funzioni elementari. Punti di discontinuità eliminabili, di prima e di seconda specie. Teorema di Weierstrass. Teorema degli zeri. Teorema di Bolzano. Applicazioni alla risoluzione di equazioni. Uniforme continuità e teorema di Cantor. Funzioni lipschitziane e relazioni con la uniforme continuità e la continuità.
Calcolo differenziale. Funzioni dotate di derivata e funzioni derivabili. Derivate sinistre e destre. Interpretazione geometrica della derivata. Retta tangente al grafico di una funzione derivabile. Punti angolosi e punti cuspidali. Continuità delle funzioni derivabili. Regole di derivazione e derivate delle funzioni elementari. Studio della derivabilità di una funzione reale. Teorema di Rolle, Cauchy e Lagrange. Regole di L'Hopital e applicazioni. Polinomi di Taylor. Formula di Taylor con il resto di Peano e di Lagrange. Applicazioni al calcolo dei limiti. Relazioni tra derivata e crescenza. Condizione necessaria per massimi e minimi relativi. Ricerca dei punti di massimo e minimo relativo ed assoluto. Caratterizzazione della crescenza e della stretta crescenza. Criteri per punti di massimo e minimo relativo. Convessità, concavità e punti di flesso: nozione globale e locale. Studio della convessità e dei punti di flesso: condizioni necessarie e criteri. Asintoti verticali, orizzontali ed obliqui. Studio del grafico di una funzione reale.
Calcolo integrale. Funzioni integrabili secondo Riemann. Integrabilità delle funzioni monotone e continue. Proprietà degli integrali. Interpretazione geometrica dell'integrale. Teorema della media integrale. Primitive di una funzione e proprietà. Integrale indefinito. Integrale definito e funzione integrale di una funzione continua. Teorema fondamentale del calcolo integrale. Formula fondamentale del calcolo integrale. Regole di integrazione. Applicazioni.
- Dispensa di "Analisi Matematica" di M. Campiti
- Dispensa di Eserciziario di Matematica 1 di M. Miranda e F. Paronetto
- Tracce d'esame
Semester
First Semester (dal 16/09/2024 al 20/12/2024)
Exam type
Compulsory - Base
Type of assessment
Oral - Final grade
Course timetable
https://easyroom.unisalento.it/Orario